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Optimization Problem

We are going to solve the problem:
f(x) = ¥(x) + h(F(x)) — mXin . (1)
Where:

1. ¢¥(:) : R" — R is a smooth function with known derivative,
2. F(-) : R" — RP is a smooth function with known derivative,

3. h(:) : RP — R is a continuous piecewise linear function.



Continuous Piecewise Linear Functions

h(x) is a continuous picewise linear if:

* h(x) is continuous,
- h={h;:i=1,...,M}is aset of affine functions,
- h(z) € {h(z) : h e n}.
We will use some additional notations:
- S ={y: h(y) = hi(y)} and S; = cl(int(S))),

- I°(z) = {i: z € 5} is a set of active indices,

- H(z) = {h; : 1 € I§(2)} is a set of active functions.



Continuous Piecewise Linear Functions

Let x € R? lets take a look at ¢, norm:

(X + X+ X3 ifx1,%2,% > 0,
X1+X —X3 1fx1,x > 0,x3 <O,
) = Pal + Pel +1xs] = x4 =X +x3 ifxi,x3 >0, <0, (2)

X1—Xp—Xx3 1fxg >0,%,x3 <0,

- If x € R, [§(x) contains only 1 index.
- If X : X3 = 0 then [¥(x) contains 2 indices.
- if x 1 x3 = 0,x, = 0 then [§(x) contains 4 indices

- 1f X1,%2,x3 = 0 then [§(x) contains all 8 indices



Clarke Subdifferential

In general function h(-) is very bad:

- |t is non-differentiable. Gradient doesn't exists.

- It Is non-convex. Subgradient doesn't exist.



Clarke Subdifferential

We will use generalization of subdifferential:

Osf(X) = {Lim Vi) :y Differentiable} : (3)

Y—X

acf(x) = conv(def(x). (4)



Clarke Subdifferential
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Clarke Subdifferential
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Clarke Subdifferential
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Clarke Subdifferential

So we have:
lim VA(y) =1,
y'<0—0

lim Vf(y') =1,

yi>0—0

: an(O) — {_171};
* 0cf(0) = conv(9sf(0)) = conv({—1,1}) = [-1,1].



Clarke Subdifferential

Take a look at our target function at point x

f(x) = ¥(x) + h(F(x)) (8)
We have:

- an active set If(x) of size m,

+ set of active functions H(x) = {a/x+ b;,i =1,...,m},

- m different gradients in form Vf(x) = Vy(x) + VF(x)aq;,
- Ocf(x) = conv(Vy(x) + VFE(x)ai|i € I7).
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F(x) Approximation

Suppose we don't have an access to exact function F(+). But instead
we have an element-wise approximations mFi:

CFi(x+5) — mhi(x+5)| < kigfA? Vs € B(0,A),
[VFi(x4+5) = Vmfi(x + 5)|| < kiegA Vs € B(0,A),

VMO < K
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Master Model and Generators &

Suppose we have a point x*. For this point, we form a generator &"
based on active and potentially active indices.

In order to build a generator &* we will use approximations mf.
Generator &* contains elements in form Vi (xf) + VM(xF)a;.

Elements of generator &* form a matrix G*.
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Master Model and Generators &

At each step kR we want:
{(Vp(x*) + YM(X¥)a; - i e IE(F(XF)} C &, (9)

& C{VY(x*) + VMO aily € B(x*, Ar), i € IE(F(y))}.  (10)
It is Important for a good approximation of dcf(x).
In practive all we can do is build this sets using sampling:
- {VY(xF) + VM(xF)a; 1 i € I8(F(XF))} C &F,

- BF C{VY(X¥) + VM(x®)a;ly € Y,i € IE(F(y))} for some
Y C B(Xi?, A/?)
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Master Model and Generators &

We want to find:
g" = proj(0, conv(&")). (11)

To find this projection we will solve a problem:

AT(GR)TGFA — miny,
e'x=1)>0.

Finally we have:
gr = G-, (13)
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Master Model and Generators &

We want to build a master model m],; such that Vm]; = gp:
p p
m’, :¢(xk)+ZermF"(x)+Z)\7bj,.. (14)
i=1 i=1

Where w® = ARX* and A is matrix formed from components a;.
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Sufficient Decrease Condition

On each step k we will use master model in trust region subproblem:

f(yR k i
m, (x° + s*) — min,
{ ‘ 3 (15)

S € B(O, A/?)

We don’t need an exact solution. We want s satisfy:

R
) = Y+ 57 + (M) = MOt +57),a® ) > 2 min{a,, gl
2 KmH
(16)
Where a(® corresponds to function h(®:

A (F(x)) < h(F(XE)hO(F(XE 4+ sK)) > h(F(xk + 7). (17)
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Sufficient Decrease Condition

For any aq such that {Vy(x®) + VM(xF)a,) € &*:

= max o, o, (IW(X’?) - vwx’?)aquﬂ L

kAR

And potential s*:

Vip(xF) + VM(xF)aq
NIV (R + VM(xF)aq])-

Ak__j*
St = /-sdA
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To control the quallity of approximation in trust region optimization
we will use coefficient:

_ () — (X" + 57) + hO(F(XT)) — hO(F(x® + s7))

P(XR) — (xR + sF) + (M(xF) — M(xk 4 sF), a(k). (20)

If py, is sufficiently large we accept point x? + s*.
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Trimmed Estimation

Suppose we have datset S = {(x1,¥1), ..., (Xn, ¥n)}, lOSs function
[(V,y). And prediction function F(x,w), where w is a parameters
vector. We want to solve a problem:

13 . .
_ : (1) (1) i
; ;l(,) (F(X W),y ) — min. (21)

In order to calculate this function we have to calculate loss for every
element of S and select smallest g values.
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Trimmed Estimation

Let’s present it in the form of:

f(x) = ¢(x) + h(F(x)). (22)

CY(w) =0,

© F(w) = [l(FOa, W), v, - L(FOvs W)y,

©h() = {g"(lw)) : a € 177 (U(w))},

FBN(UW)) = {7 Tg) = L (FOO, W), ) < gy (FOXD, ),y @)},

. _JVa ieaq,
SE= {O otherwise.
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Trimmed Estimation

So we have:

q
) = 2 3~ oy (FO, w) ) = (). (23)

=1

We already can use manifold sampling algorithm to solve this
problem. However authors proposed some modifications.
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Direction Search

In order to make an optimization step we will solve the problem M:

7\

(

T— min_,
TER,SERN

Isll2 < A, (24)

| g°(I(wh)) — h(l(W)) + V(g% o )(WH)Ts < 7 Va € &k,
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We can replace function F(x) with approximation. This
approximation could be stochastic.

At each step we consider a subsample S C {1,...,N}. We replace
function [(w) projection of function which used only subsampled
elements.

Also, the authors modified the acceptance criteria:

. Nl () — h(ls (w* +5) )

—Tk.
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Final Algorithm

Input: parameters v4ec € (0,1), Yinc > 1, 0 € (0, 1), initial point
w® € R", trust-region radius Ag > 0
repeat
Sample Sf c {1,...,N}
(Tk, S*) < M(SF, h,wk, Ay)
Sample S c {1,...,N}
if p, >0
wWhH Wk 1 gk
Apyq < VincAr
else
Wk
Apyq < Ydec A
end if
until budget exhausted
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