Incremental Consensus based Collaborative Deep Learning

A short report on [Jiang et al., 2018]

Nazarov Ivan

Skoltech

July 27, 2018

General Setting

Agents connected within a communication graph

want to collaboratively solve an optimization problem

Generic Optimisation in ML

Agents are nodes in a undirected connected graph G = (V, E)

Each node $v \in G$ has a set of objectives $S_v = (I_{vi} \colon \mathbb{R}^d \to \mathbb{R})_{i=1}^{m_v}$

- ▶ $l_{vi}(\theta) = \text{Loss}(x_{vi}, y_{vi}; \theta) \text{supervised learning}$
- ▶ $l_{vi}(\theta) = \text{Loss}(z_{vi}; \theta)$ unsupervised learning

Goal - to solve the global problem

$$\underset{\theta \in \Theta}{\text{minimize}} \quad \sum_{v \in G} \sum_{i \in v} I_{vi}(\theta). \tag{Glbl-P}$$

Distributed Optimisation in ML

Assumptions on G

- ▶ two-way communication: if $uv \in E$ then $vu \in E$
- ▶ for any $v \in G$ the neighbours $G_v = \{u \in G : vu \in E\}$
- single connected component

Assumptions on I_{vi} : γ_{vi} -smooth, proper and coercive

- $I_{i\nu}(y) \le I_{i\nu}(x) + \langle \nabla I_{i\nu}(x), y x \rangle + \frac{\gamma_{\nu i}}{2} \|y x\|^2 \text{ for all } y$
- $dom I_{vi} = \{\theta : I_{vi}(\theta)\} \neq \emptyset$
- coercive $I_{vi}(\theta) \to \infty$ as $\|\theta\| \to \infty$

Distriubuted and Decentralized Optimisation

Consensus problem

$$\begin{array}{ll} \underset{\theta_{\nu} \in \Theta}{\text{minimize}} & \sum_{v \in G} \sum_{i \in v} I_{vi}(\theta_{v}) \,. \\ \\ \text{subject to} & \theta_{v} = \theta_{u} \,, \forall v \in G \,\, \forall u \in \textit{G}_{v} \,. \end{array} \tag{Cons-P}$$

Equivalent problem: if A – symmetric adjacency matrix of G then

$$\label{eq:minimize} \begin{array}{ll} \underset{\theta \in \Theta^G}{\text{minimize}} & \sum_{v \in G} \sum_{i \in v} I_{vi}(\theta_v) \,. \\ \\ \text{subject to} & A\theta = \theta \,. \end{array}$$

The Optimization Updates in Distributed Optimization

Figure 1: Blue dots $(\theta_k^i \sim \theta_v^t)$ represent the current states; Green dots represent the private local optima $(\theta_*^i \sim \theta_v^*)$; Purple dot $(\theta_* \sim \theta^*)$ represents the ideal global optimal solution; another purple dot $\hat{\theta} \sim \hat{\theta}^t$ represents a possible consensus point.

Consensus Distributed SGD

CD-SGD update looks like this

$$\boldsymbol{\theta}_{v}^{t+1} \leftarrow \underbrace{\left\{\frac{1}{|\textit{G}_{v}|} \sum_{u \in \textit{G}_{v}} \boldsymbol{\theta}_{u}^{t}\right\}}_{\text{synchronisation step}} - \underbrace{\boldsymbol{g}_{v}^{t}(\boldsymbol{\theta}_{v}^{t})\boldsymbol{\eta}}_{\text{gradient step}},$$

where $g_{\scriptscriptstyle \mathcal{V}}^{\,t}(\theta_{\scriptscriptstyle \mathcal{V}}^{\,t})$ is the stochastic gradient of $\mathit{I}_{\scriptscriptstyle \mathcal{V}}$ at $\theta_{\scriptscriptstyle \mathcal{V}}^{\,t}$

$$\left. g_{v}^{t}(oldsymbol{ heta}_{v}^{t}) =
abla_{ heta} \hat{\mathbb{E}}_{l \sim \mathcal{S}_{v}} l(heta)
ight|_{ heta = oldsymbol{ heta}_{v}^{t}}.$$

Proposal of the paper

Instead of this ... (CDSGD)

$$oldsymbol{ heta}^{t+1} \leftarrow igl(oldsymbol{\sqcap} \otimes I_d igr) oldsymbol{ heta}^t - oldsymbol{oldsymbol{g}}(oldsymbol{ heta}^t) \eta \,.$$

... why not do this

$$oldsymbol{ heta}^{t+1} \leftarrow \left(oldsymbol{\sqcap}^{ au} \otimes I_d
ight) oldsymbol{ heta}^t - oldsymbol{g}(oldsymbol{ heta}^t) \eta \,,$$

thereby increasing the communication complexity by $\tau \geq 1$.

- ... and get
 - the incremental-CDSGD (i-CDSGD)

Results: consensus bound

Consensus with fixed step size, i-CDSGD

Let Π be the double stochastic version of A with $\lambda_2 < 1$:

▶ $λ_j = λ_j(Π)$ – the *j*-th largest eigenvalue of Π

If assumptions hold and $0<\alpha\leq \frac{r_1-(1-\lambda_N')B_m}{\gamma_mB_m}$, then iterates of i-CDSGD satisfy the following inequality: $\forall t\geq 1$

$$\mathbb{E}\left\|\theta_{\nu}^{t} - \frac{1}{|G|} \sum_{\nu \in G} \theta_{\nu}^{t}\right\| \leq \frac{\alpha \sqrt{B + B_{m} W^{2}}}{1 - \lambda_{2}^{\tau}}, \tag{1}$$

where $s^t = \frac{1}{N} \sum_{v \in G} \theta_v^t$, and $P = \Pi \otimes I_d$, $\gamma_m = \max_{v \in G, i \in v} \gamma_{vi}$, and B_m , B, and W are constants determined by the Lyapunov analysis.

Results

Provide vanilla and momentum variants of Gradient Descent iterations

Prove convergence for $au \geq 1$ using Lyapunov stability analysis

Conduct experimental validation of the modification on CIFAR-10 with a deep CNN:

- sparse network topology with 5 nodes
- both balanced and imbalanced data

References

Jiang, Z., Balu, A., Hegde, C., and Sarkar, S. (2018). On consensus-optimality trade-offs in collaborative deep learning.