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The update step

Gradient-based optimization usually use the following update
00— G 1Vef(9)n, (1)

where G € R9*9 is non-singular matrix.

» Newton: G is the Hessian H = V2f(0)
» Natural gradient: G is the Informaton Matrix Vyf (6)Vef(6)



the Idea of the paper

Inverting G is expensive O(d?), so...

. approximate G so that it its cheap to invert

» G = diag H adaptively scales the updates

. while also keeping correlation between the parameters
» the off-diagonal elements of G capture cross effects

» diagonal and block diagonal approximations neglect them



Block Mean Approximation
Approximate G with the Block Mean Approximation:

BMAs(G) :argrg,i/r\]HG—(/_\—l—B)Hi_, (2)

where A and B are block expansions of A and B w.r.t. partition s.
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Figure 1: Expansion matrices. (a) Diagonal matrix A. (b) Diagonal
expansion of A. (c) Full matrix B. (d) Full expansion of B. The partition
vector in both cases is s = (2,5, 3).



Key operations

If A and B are block expansions of A and B w.r.t. partition s, then
(A+B)*=A*+D, (3)
D = (NS +SBS)™* — (AS)™1.

(A+B) 2=

for s = (s1, ..., s.) and S = diag(|s;|)-_; € mathbbR:*L.
> requires O(L3) instead of O(d?)

» no need to construct the expansions explicitly



Application to AdaGrad

Update (1): 0;11 < 0; — G; 1gen for gr = Vyf:(6;) and

N|—=

Gt:I:It , with Flt%Ht:nggg

s<t

AdaGrad-Full has H; = H; with time-complexity O(d?)

N

Approximations use H; = Z;F:Z; with Z; = (diag H;)
» AdaGrad-Diag has F; = | and O(d)

» AdaGrad-BMA uses F; = BMA;(Z; *H:Z; ") and O(L3 + d)



AdaGrad-BMA

» Keep running estimates of the matrices needed for the BMA

ugj = E gtj, and vy = E Ztj -

JES; JES;
Then Z7'H,Z 1 is approximated by the expansion matrices of
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From (4) the inverse root is | + D where
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Eigen-decompose M; as RVR' and get its root via RV 2RT



Experiments

» Small and large conv-nets in MNIST and CIFAR-10

» partition s for BMA:
» 1 block per layer of the NN

» 2 subblocks for weights and bias in each layer

» n€{107%K: k=0, ..., —4} report the best performance



Some results
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Figure 2: Performance of AdaGrad and its approximations on two standard datasets.
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