
Block Mean Approximation for E�cient Second

Order Optimization

A short report on [Lu et al., 2018]

Nazarov Ivan

Skoltech

July 27, 2018

The update step

Gradient-based optimization usually use the following update

✓ ✓ � G
�1
r✓f (✓)⌘ , (1)

where G 2 Rd⇥d
is non-singular matrix.

I Newton: G is the Hessian H = r
2
✓f (✓)

I Natural gradient: G is the Informaton Matrix r✓f (✓)r✓f (✓)T

the Idea of the paper

Inverting G is expensive O(d
3
), so...

... approximate G so that it its cheap to invert

I G = diag H adaptively scales the updates

... while also keeping correlation between the parameters

I the o↵-diagonal elements of G capture cross e↵ects

I diagonal and block diagonal approximations neglect them

Block Mean Approximation

Approximate G with the Block Mean Approximation:

BMAs(G) = argmin
B,⇤

��G � (⇤̄+ B̄)
��2
F
, (2)

where ⇤̄ and B̄ are block expansions of ⇤ and B w.r.t. partition s.

(a) ⇤ (b) ⇤̄ (c)

B
(d) B̄

Figure 1: Expansion matrices. (a) Diagonal matrix ⇤. (b) Diagonal

expansion of ⇤. (c) Full matrix B . (d) Full expansion of B . The partition

vector in both cases is s = (2, 5, 3).

Key operations

If ⇤̄ and B̄ are block expansions of ⇤ and B w.r.t. partition s, then

(⇤̄+ B̄)
�1

= ⇤̄
�1

+ D̄ , (3)

D = (⇤S + SBS)
�1
� (⇤S)

�1 .

(⇤̄+ B̄)
�1
2 = ⇤̄

�1
2 + D̄ , (4)

D = S
� 1

2

⇣
(⇤+ S

1
2BS

1
2)

� 1
2 � ⇤

� 1
2

⌘
S
� 1

2 ,

for s = (s1, . . . , sL) and S = diag(|si |)Li=1 2 mathbbR
L⇥L

.

I requires O(L
3
) instead of O(d

3
)

I no need to construct the expansions explicitly

Application to AdaGrad

Update (1): ✓t+1 ✓t � G
�1
t gt⌘ for gt = r✓ft(✓t) and

Gt = Ĥ

1
2
t , with Ĥt ⇡ Ht =

X

st

gsg
T
s .

AdaGrad-Full has Ĥt = Ht with time-complexity O(d
3
)

Approximations use Ĥt = ZtFtZt with Zt =
�
diag Ht

�1
2 :

I AdaGrad-Diag has Ft = I and O(d)

I AdaGrad-BMA uses Ft = BMAs
�
Z

�1
t HtZ

�1
t

�
and O(L

3
+ d)

AdaGrad-BMA

I Keep running estimates of the matrices needed for the BMA

uti =
X

j2si

gtj , and vti =
X

j2si

ztj .

Then Z
�1
t HtZ

�1
t is approximated by the expansion matrices of

⇤t = I and Bt = S
�1
2
Ut � diag Ut

vtv
T
t

S
�1
2 .

From (4) the inverse root is I + D̄ where

D = S
�1
2

✓✓
I +

Ut � diag Ut

vtv
T
t| {z }

MT

◆�1
2
� I

◆
S
�1
2 ,

Eigen-decompose Mt as RVR
T
and get its root via RV

�1
2RT

Experiments

I Small and large conv-nets in MNIST and CIFAR-10

I partition s for BMA:

I 1 block per layer of the NN

I 2 subblocks for weights and bias in each layer

I ⌘ 2 {10
�k

: k = 0, . . . , �4} report the best performance

Some results

10 20 30 40 50

Epochs

200

300

400

500

600

700
Train Loss

AdaGrad-diag
AdaGrad-BMA
AdaGrad-full

(a) MNIST, small model

10 20 30 40 50

Epochs

0.1

0.2

0.3

0.4
Test Error

AdaGrad-diag
AdaGrad-BMA
AdaGrad-full

(b) MNIST, small model

10 20 30 40 50

Epochs

700

750

800

850

900

950
Train Loss

AdaGrad-diag
AdaGrad-BMA
AdaGrad-full

(c) CIFAR-10, small model

10 20 30 40 50

Epochs

0.55

0.6

0.65

0.7
Test Error

AdaGrad-diag
AdaGrad-BMA
AdaGrad-full

(d) CIFAR-10, small model

Figure 2: Performance of AdaGrad and its approximations on two standard datasets.

References

Lu, Y., Harandi, M., Hartley, R. I., and Pascanu, R. (2018).

Block Mean Approximation for E�cient Second Order Optimization.
ArXiv e-prints.

