Block Mean Approximation for Efficient Second Order Optimization

A short report on [Lu et al., 2018]

Nazarov Ivan

Skoltech

July 27, 2018

The update step

Gradient-based optimization usually use the following update

$$\theta \leftarrow \theta - G^{-1} \nabla_{\theta} f(\theta) \eta \,, \tag{1}$$

where $G \in \mathbb{R}^{d \times d}$ is non-singular matrix.

- ▶ Newton: *G* is the Hessian $H = \nabla_{\theta}^2 f(\theta)$
- lacktriangle Natural gradient: G is the Informaton Matrix $abla_{ heta} f(heta)
 abla_{ heta} f(heta)^{\mathrm{T}}$

the Idea of the paper

Inverting G is expensive $\mathcal{O}(d^3)$, so...

- \dots approximate G so that it its cheap to invert
 - $ightharpoonup G = diag\ H$ adaptively scales the updates
- ... while also keeping correlation between the parameters
 - \triangleright the off-diagonal elements of G capture cross effects
 - diagonal and block diagonal approximations neglect them

Block Mean Approximation

Approximate *G* with the **Block Mean Approximation**:

$$BMA_{s}(G) = \arg\min_{B,\Lambda} \|G - (\bar{\Lambda} + \bar{B})\|_{F}^{2}, \qquad (2)$$

where $\bar{\Lambda}$ and \bar{B} are block expansions of Λ and B w.r.t. partition \mathbf{s} .

Figure 1: Expansion matrices. (a) Diagonal matrix Λ . (b) Diagonal expansion of Λ . (c) Full matrix B. (d) Full expansion of B. The partition vector in both cases is $\mathbf{s}=(2,5,3)$.

Key operations

If $\bar{\Lambda}$ and \bar{B} are block expansions of Λ and B w.r.t. partition \mathbf{s} , then

$$(\bar{\Lambda} + \bar{B})^{-1} = \bar{\Lambda}^{-1} + \bar{D},$$

$$D = (\Lambda S + SBS)^{-1} - (\Lambda S)^{-1}.$$
(3)

$$(\bar{\Lambda} + \bar{B})^{-\frac{1}{2}} = \bar{\Lambda}^{-\frac{1}{2}} + \bar{D},$$

$$D = S^{-\frac{1}{2}} \left((\Lambda + S^{\frac{1}{2}} B S^{\frac{1}{2}})^{-\frac{1}{2}} - \Lambda^{-\frac{1}{2}} \right) S^{-\frac{1}{2}},$$
(4)

for $\mathbf{s} = (s_1, \ldots, s_L)$ and $S = diag(|\mathbf{s}_i|)_{i=1}^L \in mathbb{R}^{L \times L}$.

- ▶ requires $\mathcal{O}(L^3)$ instead of $\mathcal{O}(d^3)$
- no need to construct the expansions explicitly

Application to AdaGrad

Update (1):
$$heta_{t+1} \leftarrow heta_t - G_t^{-1} g_t \eta$$
 for $g_t =
abla_{ heta} f_t(heta_t)$ and $G_t = \hat{H}_t^{rac{1}{2}}$, with $\hat{H}_t pprox H_t = \sum_{s < t} g_s g_s^{\mathrm{T}}$.

AdaGrad-Full has $\hat{H}_t = H_t$ with time-complexity $\mathcal{O}(d^3)$

Approximations use $\hat{H}_t = Z_t F_t Z_t$ with $Z_t = (diag H_t)^{\frac{1}{2}}$:

- ▶ AdaGrad-Diag has $F_t = I$ and $\mathcal{O}(d)$
- ▶ AdaGrad-BMA uses $F_t = BMA_s(Z_t^{-1}H_tZ_t^{-1})$ and $\mathcal{O}(L^3 + d)$

AdaGrad-BMA

Keep running estimates of the matrices needed for the BMA

$$u_{ti} = \sum_{j \in \mathbf{s}_i} g_{tj}$$
, and $v_{ti} = \sum_{j \in \mathbf{s}_i} z_{tj}$.

Then $Z_t^{-1}H_tZ_t^{-1}$ is approximated by the expansion matrices of

$$\Lambda_t = I$$
 and $B_t = S^{-\frac{1}{2}} \frac{U_t - diag \ U_t}{v_t v_t^{\mathrm{T}}} S^{-\frac{1}{2}}$.

From (4) the inverse root is $I + \bar{D}$ where

$$D = S^{-\frac{1}{2}} \left(\left(\underbrace{I + \frac{U_t - \operatorname{diag} U_t}{v_t v_t^{\mathrm{T}}}} \right)^{-\frac{1}{2}} - I \right) S^{-\frac{1}{2}},$$

Eigen-decompose M_t as RVR^{T} and get its root via $RV^{-\frac{1}{2}}R^{\mathrm{T}}$

Experiments

- ► Small and large conv-nets in MNIST and CIFAR-10
- partition s for BMA:
 - ▶ 1 block per layer of the NN
 - 2 subblocks for weights and bias in each layer
- ▶ $\eta \in \{10^{-k}: k = 0, ..., -4\}$ report the best performance

Some results

Figure 2: Performance of AdaGrad and its approximations on two standard datasets.

References

Lu, Y., Harandi, M., Hartley, R. I., and Pascanu, R. (2018). Block Mean Approximation for Efficient Second Order Optimization. *ArXiv e-prints*.