
When Recurrent Models Don't Need to be Recurrent

by John Miller and Moritz Hardt

Oleg Voinov
September 7

Intro

What Is Recurrent Neural Network

General form:

Classical RNN:

Linear:

What Is Recurrent Neural Network

LSTM:

Feed-Forward vs RNN
RNN is not feed-forward

Feed-Forward vs RNN

RNN:

Truncated RNN:

Why Feed-Forward Instead of RNN

● Parallelization

Why Feed-Forward Instead of RNN

● Parallelization

● Trainability

Why Feed-Forward Instead of RNN

● Parallelization

● Trainability

truncated backpropagation to the rescue

Why Feed-Forward Instead of RNN

● Parallelization

● Trainability

● Memory footprint

truncated backpropagation to the rescue

Feed-Forward Overperforming RNNs

● WaveNet on speech synthesis

it is autoregressive

Feed-Forward Overperforming RNNs

● WaveNet on speech synthesis

● Transformer on machine translation

it is not autoregressive

Feed-Forward Overperforming RNNs

● WaveNet on speech synthesis

● Transformer on machine translation

Feed-Forward Overperforming RNNs

● WaveNet on speech synthesis

● Transformer on machine translation

● Temporal convolutional network
by Bai et al. on multiple tasks

Bai et al. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling // arXiv, 2018

Why Feed-Forward Outperform RNN
i.e. why full history doesn’t help

Dauphin et al. Language Modeling with Gated Convolutional Networks // ICML’17

● Full history is unnecessary, [Dauphin et al]

perplexity

Why Feed-Forward Outperform RNN
i.e. why full history doesn’t help

Miller and Hardt. When Recurrent Models Don't Need To Be Recurrent // arXiv, 2018

● Full history is unnecessary, [Dauphin et al]

● Full history is not used, [Miller and Hardt] (the paper)

The Actual Paper

RNN and Feed-Forward Truncated RNN

RNN

Truncated RNN

Stability

State-transition map is stable = it is contractive:

Stability

General form:

Classical RNN:

Linear:

,

, is Lipschitz constant of

* LSTM

Claims

● Stable RNNs are well approximated by truncated RNNs
○ outputs are close
○ parameters are close

● Real-world RNNs are effectively stable

Theory

Outputs Are Close

i.e. stable RNNs don’t have long-term memory:

● stable = vanishing gradients

● long-term memory requires exploding gradients, [Pascanu et al]

Pascanu, Mikolov, Bengio. On the difficulty of training Recurrent Neural Networks // ICML’13

Gradients Are Close

i.e. gradients of RNN and truncated RNN with the same parameters are close

Gradients Are Close

i.e. gradients of RNNs with slightly different parameters are close

Weights Are Close

Weights Are Close

a must

Bertsekas. Nonlinear Programming. Athena Scientific, 1999

too fast lr-decay, but theory suggests that OK [Bertsekas]

Main Result

i.e. stable RNN is well approximated by feed-forward truncated RNN

Experiments

Gradients and Weights Are Close

Stability Is OK

Stable RNN vs arbitrary RNN:

● same performance on Wikitext-2 benchmark

● arbitrary RNN are effectively stable

Stability Is OK

Stable RNN vs arbitrary RNN:

● same performance on Wikitext-2 benchmark

● arbitrary RNN are effectively stable

sketchy

Stability is OK

Arbitrary RNN (LSTM) vs truncated arbitrary RNN (LSTM)

Stability is OK

Arbitrary RNN (LSTM) vs truncated arbitrary RNN (LSTM)

SOTA is 40-100

Weights Are Close for Arbitrary

Weights Are Close for Arbitrary

Summary

● Stable RNNs are well approximated by truncated RNNs
○ outputs are close
○ parameters are close

● Real-world RNNs are effectively stable

Summary

● Stable RNNs are well approximated by truncated RNNs
○ outputs are close
○ parameters are close

● Real-world RNNs are effectively stable

strange learning-rate scheduling

needs more backup

