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Intro



What Is Recurrent Neural Network

General form:

Classical RNN:

Linear:



What Is Recurrent Neural Network

LSTM:



Feed-Forward vs RNN
RNN is not feed-forward



Feed-Forward vs RNN

RNN:

Truncated RNN:



Why Feed-Forward Instead of RNN

● Parallelization
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Why Feed-Forward Instead of RNN

● Parallelization

● Trainability

● Memory footprint

truncated backpropagation to the rescue



Feed-Forward Overperforming RNNs

● WaveNet on speech synthesis

it is autoregressive
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Feed-Forward Overperforming RNNs

● WaveNet on speech synthesis

● Transformer on machine translation

● Temporal convolutional network
by Bai et al. on multiple tasks

Bai et al. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling // arXiv, 2018



Why Feed-Forward Outperform RNN
i.e. why full history doesn’t help

Dauphin et al. Language Modeling with Gated Convolutional Networks // ICML’17

● Full history is unnecessary, [Dauphin et al]

perplexity



Why Feed-Forward Outperform RNN
i.e. why full history doesn’t help

Miller and Hardt. When Recurrent Models Don't Need To Be Recurrent // arXiv, 2018

● Full history is unnecessary, [Dauphin et al]

● Full history is not used, [Miller and Hardt] (the paper)



The Actual Paper



RNN and Feed-Forward Truncated RNN

RNN

Truncated RNN



Stability

State-transition map is stable = it is contractive:



Stability

General form:

Classical RNN:

Linear:

,

,         is Lipschitz constant of 

* LSTM



Claims

● Stable RNNs are well approximated by truncated RNNs
○ outputs are close
○ parameters are close

● Real-world RNNs are effectively stable



Theory



Outputs Are Close

i.e. stable RNNs don’t have long-term memory:

● stable = vanishing gradients

● long-term memory requires exploding gradients, [Pascanu et al]

Pascanu, Mikolov, Bengio. On the difficulty of training Recurrent Neural Networks // ICML’13



Gradients Are Close

i.e. gradients of RNN and truncated RNN with the same parameters are close



Gradients Are Close

i.e. gradients of RNNs with slightly different parameters are close



Weights Are Close



Weights Are Close

a must

Bertsekas. Nonlinear Programming. Athena Scientific, 1999

too fast lr-decay, but theory suggests that OK [Bertsekas]



Main Result

i.e. stable RNN is well approximated by feed-forward truncated RNN



Experiments



Gradients and Weights Are Close



Stability Is OK 

Stable RNN vs arbitrary RNN:

● same performance on Wikitext-2 benchmark

● arbitrary RNN are effectively stable



Stability Is OK 

Stable RNN vs arbitrary RNN:

● same performance on Wikitext-2 benchmark

● arbitrary RNN are effectively stable

sketchy



Stability is OK

Arbitrary RNN (LSTM) vs truncated arbitrary RNN (LSTM)



Stability is OK

Arbitrary RNN (LSTM) vs truncated arbitrary RNN (LSTM)

SOTA is 40-100



Weights Are Close for Arbitrary



Weights Are Close for Arbitrary



Summary

● Stable RNNs are well approximated by truncated RNNs
○ outputs are close
○ parameters are close

● Real-world RNNs are effectively stable



Summary

● Stable RNNs are well approximated by truncated RNNs
○ outputs are close
○ parameters are close

● Real-world RNNs are effectively stable

strange learning-rate scheduling

needs more backup


