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Intro



What Is Recurrent Neural Network

General form: ht — wa(ht—l, CCt)

Classical RNN: hy = p (Wht_l -+ UCI}t)

Linear: ht — Wht_l + Uyct



What |Is Recurrent Neural Network
ft=0Wirhi—1 + Usxy)
it = o(Wihi_1 + Ujxy)
o = o(Wohi—1 + Uyxy)
2z = tanh(W,hy 1 + U, ay)
Ct = 14024 + f1 0 Ct—q
h; = oy - tanh(c),

LSTM:



Feed-Forward vs RNN

RNN is not feed-forward
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Feed-Forward vs RNN

RNN: hy, = @l he—i524)

k k
Truncated RNN: ht = wa(ht_l, Zlﬁt), hf—k =0



Why Feed-Forward Instead of RNN
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Why Feed-Forward Instead of RNN
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Why Feed-Forward Instead of RNN
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Why Feed-Forward Instead of RNN
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Feed-Forward Overperforming RNNs

WaveNet on speech synthesis
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Feed-Forward Overperforming RNNs

WaveNet on speech synthesis

Transformer on machine translation

it is not autoregressive
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Feed-Forward Overperforming RNNs

WaveNet on speech synthesis

Transformer on machine translation

The
animal
didn’t
Cross
the

because
it

was

too

wide

The
animal
didn’t
Cross
the
street
because

was
too
wide

The The
animal
didn’t didn’t
Cross Cross
the the
street street
because because
it
was was
too too
tired tired



Feed-Forward Overperforming RNNs

e \WaveNet on speech synthesis
e Transformer on machine translation

e Temporal convolutional network
by Bai et al. on multiple tasks

Bai et al. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling // arXiv, 2018



Why Feed-Forward Outperform RNN

i.e. why full history doesn’t help

e Full history is unnecessary, [Dauphin et al]
perplexity P = 2H =2 > s p(s)loga p(s)
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Figure 4. Test perplexity as a function of context for Google Billion Word (left) and Wiki-103 (right). We observe that models with
bigger context achieve better results but the results start diminishing quickly after a context of 20.

Dauphin et al. Language Modeling with Gated Convolutional Networks // ICML'17



Why Feed-Forward Outperform RNN

i.e. why full history doesn’t help

e Full history is unnecessary, [Dauphin et al]

e Full history is not used, [Miller and Hardt] (the paper)

Miller and Hardt. When Recurrent Models Don't Need To Be Recurrent // arXiv, 2018



The Actual Paper



RNN and Feed-Forward Truncated RNN

RNN hy = wa(ht—l, l“t)

k k k
Truncated RNN ht = wa(ht_l, $t), ht—k =0



Stability hi = ¢uw(hi—1,7¢)

State-transition map is stable = it is contractive:

|6 (h,z) = du(h', 2)|| < A|h— 1|

A <1



Stability

General form: ht = wa(ht—l, CUt)

|ow(h,z) — du(h,z)|| < X||h—R'|]. A<1

Classical RNN: fi; = p (Wht_l -+ Ua:t)
|W|| < 1/L,., L, is Lipschitz constant of 0

Linear: ht — Wht_l -+ UZIZ’t
Wi <A <1

*LSTM



Claims

e Stable RNNs are well approximated by truncated RNNs
o outputs are close
o parameters are close

e Real-world RNNs are effectively stable



Theory



hy = ?bw(ht—laﬂjt)
Outputs Are Close hE = du(hE @), hE =0

Lemma 1. Assume ¢, is A\-contractive and L,-Lipschitz in x. Assume the input sequence ||z;|| <

B, for allt. If k > O (log ( 2=B=) ), then the difference in hidden states ||h; — hE|| < e.
(1-XN)e

I.e. stable RNNs don’t have long-term memory:
e stable = vanishing gradients

e |ong-term memory requires exploding gradients, [Pascanu et al]

Pascanu, Mikolov, Bengio. On the difficulty of training Recurrent Neural Networks // ICML'13



_ hy = ¢w(ht—1a$t)
Gradients Are Close hE = du(hE @), hE =0

Lemma 2. Assume p (and therefore pk) 1s Lipschitz and smooth. Assume ¢, 1s smooth, \-
contractive, and Lipschitz in x and w. Assume the inputs satisfy ||x¢|| < By, then

vap:r — prlfrH = ykAF,

where v = O (Bm(l — )\)_2), suppressing dependence on the Lipschitz and smoothness parameters.

i.e. gradients of RNN and truncated RNN with the same parameters are close



_ hy = ¢w(ht—1>$t)
Gradients Are Close hy = du(hf_1,20), hi, =

Lemma 2. Assume p (and therefore pk) 1s Lipschitz and smooth. Assume ¢, 1s smooth, \-
contractive, and Lipschitz in x and w. Assume the inputs satisfy ||z¢|| < By, then

vapT — prlfrH = ykAF,

where v = O (Bx(l — )\)_2), suppressing dependence on the Lipschitz and smoothness parameters.

Lemma 3. For any w,w’ € Q, suppose ¢, is smooth, A-contractive, and Lipschitz in w. If p is
Lipschitz and smooth, then

|Vwpr(w) = Vupr(@")|| < 8w — v’

F

where B = O ((1 — )\)_3), suppressing dependence on the Lipschitz and smoothness parameters.

i.e. gradients of RNNs with slightly different parameters are close



. — ¢w<ht 17$t)
Weights Are Close hk = pu(hi_y, 20, My =

Proposition 2. Under the assumptions of Lemmas 2 L and!S’ for compact, convex S), after N steps
of projected gradient descent with step size oy = ‘ - oz'y/c/\"“No‘f’)+1

recurr _ wtrunc|



. — ¢w<ht 1733?5)
Weights Are Close hk = pu(hi_y, 20, My =

Proposition 2. Under the assumptions of Lemmas |2 and |3, for Compact convex §), after N steps
of projected gradient descent with step size ay = a/t, ||[w¥ H - oz'y/{/\"‘No‘ﬁ+1

Wrecurr — wtrunc

a must

too fast Ir-decay, but theory suggests that OK [Bertsekas]

Bertsekas. Nonlinear Programming. Athena Scientific, 1999



_ hy = §bw<ht—1>$t)
Main Result WY = o (h¥ |, zy), RBE . =0

Theorem 1. Let p be Lipschitz and smooth. Assume ¢, is smooth, A-contractive, Lipschitz in
x and w. Assume the inputs are bounded, and the prediction function f is Ljy-Lipschitz. If
k = O(log(vN#/¢)), then after N steps of projected gradient descent with step size oy = 1/t,
lyr -yl <e.

i.e. stable RNN is well approximated by feed-forward truncated RNN



Experiments



Gradients and Weights Are Close

Difference in Recurrent Weight Matrices

Gradient Difference Due to Truncation (A = 0.75) during Gradient Descent (A =0.75, k = 35)
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Figure 1: Empirical validation of Lemma |2| and Proposition [2| on random Gaussian instances.
Without the 1/t rate, the gradient descent bound no longer appears qualitatively correct, suggesting
the O(1/t) rate is necessary.



Stability Is OK

Stable RNN vs arbitrary RNN:
e same performance on Wikitext-2 benchmark

e arbitrary RNN are effectively stable



Stability Is OK

Stable RNN vs arbitrary RNN:
e same performance on Wikitext-2 benchmark

e arbitrary RNN are effectively stable

sketchy



Stability is OK

Arbitrary RNN (LSTM) vs truncated arbitrary RNN (LSTM)

RNN Trained on Wiki-Text-2.
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Figure 2: Norm of the gradient with respect to inputs, |V, pi+il|, as the distance between the
input and the loss grows, averaged over the entire held-out set. The gradient vanishes for moderate
values of ¢ in both cases. The RNN has test perplexity 146.7 and the LSTM has test perplexity of

92.3.




Stability is OK

Arbitrary RNN (LSTM) vs truncated arbitrary RNN (LSTM)
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Figure 2: Norm of the gradient with respect to inputs, |V, pi+il|, as the distance between the
input and the loss grows, averaged over the entire held-out set. The gradient vanishes for moderate
values of ¢ in both cases. The RNN has test perplexity 146.7 and the LSTM has test perplexity of
92.3.



Weights Are Close for Arbitrary
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Weights Are Close for Arbitrary

Difference in Recurrent Weight Matrices
During Gradient Descent on Wikitext-2 (LSTMs)
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Summary

e Stable RNNs are well approximated by truncated RNNs
o outputs are close
o parameters are close

e Real-world RNNs are effectively stable



Summary

e Stable RNNs are well approximated by truncated RNNs
o outputs are close
o) parameters are close strange learning-rate scheduling o = ()//t

e Real-world RNNs are effectively stable needs more backup



