When Recurrent Models Don't Need to be Recurrent

by John Miller and Moritz Hardt

Oleg Voinov September 7

Intro

What Is Recurrent Neural Network

General form: $h_t = \phi_w(h_{t-1}, x_t)$

Classical RNN: $h_t = \rho \left(W h_{t-1} + U x_t \right)$

Linear: $h_t = W h_{t-1} + U x_t$

What Is Recurrent Neural Network

LSTM:	$f_t = \sigma(W_f h_{t-1} + U_f x_t)$
	$i_t = \sigma(W_i h_{t-1} + U_i x_t)$
	$o_t = \sigma(W_o h_{t-1} + U_o x_t)$
	$z_t = \tanh(W_z h_{t-1} + U_z x_t)$
	$c_t = i_t \circ z_t + f_t \circ c_{t-1}$
	$h_t = o_t \cdot \tanh(c_t),$

Feed-Forward vs RNN

RNN is not feed-forward

Feed-Forward vs RNN

RNN: $h_t = \phi_w(h_{t-1}, x_t)$

Truncated RNN: $h_t^k = \phi_w(h_{t-1}^k, x_t), \quad h_{t-k}^k = 0$

Parallelization

- Parallelization
- Trainability

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{\infty} \frac{\partial E_3}{\partial s_3} \frac{\partial s_3}{\partial s_{3-k}} \frac{\partial s_{3-k}}{\partial W}$$

- Parallelization
- Trainability

truncated backpropagation to the rescue

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{K} \frac{\partial E_3}{\partial s_3} \frac{\partial s_3}{\partial s_{3-k}} \frac{\partial s_{3-k}}{\partial W}$$

- Parallelization
- Trainability
- Memory footprint

truncated backpropagation to the rescue

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{K} \frac{\partial E_3}{\partial s_3} \frac{\partial s_3}{\partial s_{3-k}} \frac{\partial s_{3-k}}{\partial W}$$

WaveNet on speech synthesis

- WaveNet on speech synthesis
- Transformer on machine translation

it is not autoregressive

Output Probabilities

WaveNet on speech synthesis

Transformer on machine translation

- WaveNet on speech synthesis
- Transformer on machine translation
- Temporal convolutional network by Bai et al. on multiple tasks

Why Feed-Forward Outperform RNN

i.e. why full history doesn't help

Full history is unnecessary, [Dauphin et al]

Figure 4. Test perplexity as a function of context for Google Billion Word (left) and Wiki-103 (right). We observe that models with bigger context achieve better results but the results start diminishing quickly after a context of 20.

Dauphin et al. Language Modeling with Gated Convolutional Networks // ICML'17

Why Feed-Forward Outperform RNN

i.e. why full history doesn't help

- Full history is unnecessary, [Dauphin et al]
- Full history is not used, [Miller and Hardt] (the paper)

The Actual Paper

RNN and Feed-Forward Truncated RNN

$$h_t = \phi_w(h_{t-1}, x_t)$$

Truncated RNN
$$h_t^k = \phi_w(h_{t-1}^k, x_t), \quad h_{t-k}^k = 0$$

Stability

$$h_t = \phi_w(h_{t-1}, x_t)$$

State-transition map is stable = it is contractive:

$$\|\phi_w(h,x) - \phi_w(h',x)\| \le \lambda \|h - h'\|$$

$$\lambda < 1$$

Stability

General form: $h_t = \phi_w(h_{t-1}, x_t)$

$$\|\phi_w(h,x) - \phi_w(h',x)\| \le \lambda \|h - h'\|, \quad \lambda < 1$$

Classical RNN: $h_t = \rho \left(W h_{t-1} + U x_t\right)$

$$\|W\| < 1/L_{\rho}$$
 , $\,L_{\rho}\,$ is Lipschitz constant of ρ

Linear:
$$h_t = W h_{t-1} + U x_t \\ \|W\| \leq \lambda < 1$$

Claims

- Stable RNNs are well approximated by truncated RNNs
 - outputs are close
 - o parameters are close
- Real-world RNNs are effectively stable

Theory

Outputs Are Close

$$h_t = \phi_w(h_{t-1}, x_t)$$

$$h_t^k = \phi_w(h_{t-1}^k, x_t), \quad h_{t-k}^k = 0$$

Lemma 1. Assume ϕ_w is λ -contractive and L_x -Lipschitz in x. Assume the input sequence $||x_t|| \le B_x$ for all t. If $k \ge O\left(\log\left(\frac{L_xB_x}{(1-\lambda)\varepsilon}\right)\right)$, then the difference in hidden states $||h_t - h_t^k|| \le \varepsilon$.

i.e. stable RNNs don't have long-term memory:

- stable = vanishing gradients
- long-term memory requires exploding gradients, [Pascanu et al]

Gradients Are Close

$$h_t = \phi_w(h_{t-1}, x_t)$$

$$h_t^k = \phi_w(h_{t-1}^k, x_t), \quad h_{t-k}^k = 0$$

Lemma 2. Assume p (and therefore p^k) is Lipschitz and smooth. Assume ϕ_w is smooth, λ -contractive, and Lipschitz in x and w. Assume the inputs satisfy $||x_t|| \leq B_x$, then

$$\left\| \nabla_w p_T - \nabla_w p_T^k \right\| = \gamma k \lambda^k,$$

where $\gamma = O(B_x(1-\lambda)^{-2})$, suppressing dependence on the Lipschitz and smoothness parameters.

i.e. gradients of RNN and truncated RNN with the same parameters are close

Gradients Are Close

$$h_t = \phi_w(h_{t-1}, x_t)$$

$$h_t^k = \phi_w(h_{t-1}^k, x_t), \quad h_{t-k}^k = 0$$

Lemma 2. Assume p (and therefore p^k) is Lipschitz and smooth. Assume ϕ_w is smooth, λ -contractive, and Lipschitz in x and w. Assume the inputs satisfy $||x_t|| \leq B_x$, then

$$\left\| \nabla_w p_T - \nabla_w p_T^k \right\| = \gamma k \lambda^k,$$

where $\gamma = O(B_x(1-\lambda)^{-2})$, suppressing dependence on the Lipschitz and smoothness parameters.

Lemma 3. For any $w, w' \in \Omega$, suppose ϕ_w is smooth, λ -contractive, and Lipschitz in w. If p is Lipschitz and smooth, then

$$\left\|\nabla_{w} p_{T}(w) - \nabla_{w} p_{T}(w')\right\| \leq \beta \left\|w - w'\right\|,$$

where $\beta = O((1-\lambda)^{-3})$, suppressing dependence on the Lipschitz and smoothness parameters.

i.e. gradients of RNNs with slightly different parameters are close

Weights Are Close

$$h_t = \phi_w(h_{t-1}, x_t)$$

$$h_t^k = \phi_w(h_{t-1}^k, x_t), \quad h_{t-k}^k = 0$$

Proposition 2. Under the assumptions of Lemmas 2 and 3, for compact, convex Ω , after N steps of projected gradient descent with step size $\alpha_t = \alpha/t$, $\|w_{\text{recurr}}^N - w_{\text{trunc}}^N\| \le \alpha \gamma k \lambda^k N^{\alpha\beta+1}$.

Weights Are Close

$$h_t = \phi_w(h_{t-1}, x_t)$$

$$h_t^k = \phi_w(h_{t-1}^k, x_t), \quad h_{t-k}^k = 0$$

Proposition 2. Under the assumptions of Lemmas 2 and 3, for compact, convex Ω , after N steps of projected gradient descent with step size $\alpha_t = \alpha/t$, $\|w_{\text{recurr}}^N - w_{\text{trunc}}^N\| \le \alpha \gamma k \lambda^k N^{\alpha\beta+1}$.

a must

too fast Ir-decay, but theory suggests that OK [Bertsekas]

Main Result

$$h_t = \phi_w(h_{t-1}, x_t)$$

$$h_t^k = \phi_w(h_{t-1}^k, x_t), \quad h_{t-k}^k = 0$$

Theorem 1. Let p be Lipschitz and smooth. Assume ϕ_w is smooth, λ -contractive, Lipschitz in x and w. Assume the inputs are bounded, and the prediction function f is L_f -Lipschitz. If $k = O(\log(\gamma N^{\beta}/\varepsilon))$, then after N steps of projected gradient descent with step size $\alpha_t = 1/t$, $||y_T - y_T^k|| \le \varepsilon$.

i.e. stable RNN is well approximated by feed-forward truncated RNN

Experiments

Gradients and Weights Are Close

Figure 1: Empirical validation of Lemma 2 and Proposition 2 on random Gaussian instances. Without the 1/t rate, the gradient descent bound no longer appears qualitatively correct, suggesting the O(1/t) rate is necessary.

Stability Is OK

Stable RNN vs arbitrary RNN:

- same performance on Wikitext-2 benchmark
- arbitrary RNN are effectively stable

Stability Is OK

Stable RNN vs arbitrary RNN:

- same performance on Wikitext-2 benchmark
- arbitrary RNN are effectively stable

Stability is OK

Arbitrary RNN (LSTM) vs truncated arbitrary RNN (LSTM)

Figure 2: Norm of the gradient with respect to inputs, $\|\nabla_{x_t} p_{t+i}\|$, as the distance between the input and the loss grows, averaged over the entire held-out set. The gradient vanishes for moderate values of i in both cases. The RNN has test perplexity 146.7 and the LSTM has test perplexity of 92.3.

Stability is OK

Arbitrary RNN (LSTM) vs truncated arbitrary RNN (LSTM)

SOTA is 40-100

Figure 2: Norm of the gradient with respect to inputs, $\|\nabla_{x_t} p_{t+i}\|$, as the distance between the input and the loss grows, averaged over the entire held-out set. The gradient vanishes for moderate values of i in both cases. The RNN has test perplexity 146.7 and the LSTM has test perplexity of 92.3.

Weights Are Close for Arbitrary

Difference in Recurrent Weight Matrices During Gradient Descent on Wikitext-2 (RNN)

Weights Are Close for Arbitrary

Difference in Recurrent Weight Matrices
During Gradient Descent on Wikitext-2 (LSTMs)

Summary

- Stable RNNs are well approximated by truncated RNNs
 - outputs are close
 - o parameters are close

Real-world RNNs are effectively stable

Summary

- Stable RNNs are well approximated by truncated RNNs
 - outputs are close
 - parameters are close

strange learning-rate scheduling $\, lpha_t = lpha/t \,$

Real-world RNNs are effectively stable needs more backup