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Recall: Proximal Operator & Trust-Region

Consider problem: arg min
x

f (x)

Consider proximal operator: Proxαf (x) := arg min
x′

[
f (x ′) + 1

2‖x
′ − x‖22

]
Note, that Proxαf (x∗) = x∗ iff x∗ = arg min

x
f (x)

Hence, we can consider Disappearing Tikhonov regularization. At each step k we solve the
problem:

arg min
x

f (x) +
1
2λ
‖x − xk‖22

what is equivalent to steps
xk+1 = Proxαf (xk)
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Keep in mind

Motivation:
Improve convergence of some iterative method in such a way that the final result obtained is
not affected by the regularization. This is done by shifting the ‘center’ of the regularization to
the previous iterate.

Is it related to this paper or not? Let’s discuss at the end.

At least, how solutions are related?
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Motivation

Flat minimum is good/robust .etc! How do we estimate "flaness"? Eigenvalues of the hessian
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Modified Gibbs Distribution

For any loss function f (x) we can consider tempered Gibbs distribution:

P(x ;β) ∝ exp(−βf (x))

As β →∞, probability mass concentrates on the global minimum x∗ = arg min
x

f (x)

Let’s modify Gibbs distributions as:

P(x ′; x , β, γ) ∝ exp
(

[−β[f (x ′) +
γ

2
‖x − x ′‖22]

)
I γ << 1 all mass near x , no respect to f (x ′)

I γ >> 1 all mass near x∗, no respect to x (Gibss distribution)

Note: consider β = 1, as behavior depends on γ
β
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DNN optimization

x ∈ Rn := DNN weights
Ξ := dataset with N samples, ξk := sample from dataset
f (x ; ξk) := loss value at point ξk with weights x

Thus, original problem:

x∗ = arg min
1
N

N∑
k=1

f (x ; ξk)

Flat-Biased problem:

x∗e = arg min
x
− log

∫
x′∈Rn

exp
(
−[f (x ′) +

γ

2
‖x − x ′‖]

)
dx ′ = arg min

x
−F (x ; γ, x ′)
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Gradient Step

For stochastic batch Ξl let’s construct Modified-Gibss distribution:

qe(x ′|x , γ,Ξl) ∝ exp

[
−

(
1
m

m∑
i=1

f (x ′; ξi )

)
− γ

2
‖x − x ′‖22

]
Then gradient of our optimization problem is simple:

−∇xF (x) = −∇x log

∫
x′
qe(x ′)dx ′ = γ(x − Eqe(x′)x

′)

But expectation is intractable.
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Evaluation of Expectation

p(x) := prior, p(ξk |x) := likelihood

I Expectation is intractable → MCMC
I Batching MCMC → Stochastic Langevin Dynamics MCMC

Very brief intuition of this algorithm:
I MCMC: Dynamic + Metropolis-Hastings acceptation rule. Let’s make dynamic

I MAP: arg max
x

log p(x |ξk≤N) = arg max
x

log p(x) +
N∑

k=1
log p(ξk |x) → gradient ascent

evolution
I Following Langevin, add random forces -> no convergence to point, fluctuations

I ∆xt = ∇ log p(xt) +
N∑

k=1
∇ log p(ξk |xt) +

√
ηεt , εt ∼ N(0, 1)

I Why this dynamics? Because it ok with stochastic batch ((Welling Teh, 2011) Note that
in our problem authors consider "flat prior", so its grad vanishes
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Algorithm
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Results: CIFAR

CIFAR-10, no augmentation, 200 epochs, SGD with Nesterov’s momentum
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Results: CIFAR’s Hessian

CIFAR-10, no augmentation, 200 epochs, SGD with Nesterov’s momentum
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Results

CNN, RNN results


