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Facial Reduction



Linear Programming

Well known LP formulation:

θD = sup{bTy|ATy ≤ c}

And it’s dual form:

θP = inf{cTx|Ax = b, x ≥ 0}
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Cone Programming

Lets generalize linear programming by using cone based inequalities:

θD = sup{bTy|ATy ≤K c} = sup{bTy|c− ATy ∈ K}

And it’s dual form:

θP = inf{cTx|Ax = b, x ∈ K∗}

This is equivalent to linear programming if K = Rn
+
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Some Notation

Lets introduce some additional notations:

• A = {c− ATy|y ∈ Rn}
• FD = A ∩K
• θD(F) = sup{bTy|c− ATy ∈ F}
• H−

c = {x|cTx ≤ 0}
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Possible problem

The set of all feasible FD located inside the intersection of to sets:
A = {c− ATy|y ∈ Rn} and K.

In general difference between this two sets can be very big and leads
to big duality gap and volatile problems.

The key behind Facial Reduction Algorithm is to reduce the size of K
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Problem Size Reduction and Faces

Let’s formalize what does it mean to reduce the size of K

• We are looking for a subset F such that FD ⊂ F ⊂ K
• F is a face of the cone K which means that for any x and y from
K if x+ y ∈ F it leads to x, y ∈ F

• Ideally we want to find the smallest face Kmin = face(FD,K)
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Faces and Exposing Vectors

It’is possible to parametrize a face with a single vector. Let’s start
with defining dual cone:

K∗ = {φ ∈ Rn|(φ, k) ≥ 0,∀k ∈ K} (1)

The face F is called an exposed face if:

∃φ ∈ K∗ such that F = φ⊥ ∩ K (2)
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Some Properties

Facial reduction algorithms heavily use this two results:

Lemma 1
Let F be a face of K such that F ∩A = FD If ri(F) ∩ A ̸= ∅, then
F = Kmin

Lemma 2
Let F be a face of K such that ri(F) ∩ A = ∅, then exist
w ∈ ker(A) ∩ F∗ such that one of statement is true:

• cTw < 0 and θD(F) = −∞
• cTw = 0 and F ∩ {w}⊥ ∩ A = F ∩A
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Facial Reduction Algorithm

1. Set i = 0 and F0 = K
2. If ker(A) ∩ H−

c ∩ F∗
i ⊆ span(w1, . . . ,wi) then stop. Fi = Kmin

3. Find wi+1 ∈ (ker(A) ∩ H−
c ∩ F∗

i )− span(w1, . . . ,wi)
4. If cTwi+1 < 0 then stop. The problem is infeasible
5. Set Fi+1 = Fi ∩ {wi+1}⊥ and i = i+ 1. Go to step 2.
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Robust PCA Formulation and
Relaxation



Robust PCA

The main goal is to decompose matrix Z ∈ Rm×n using lower rank
approximation: rank(L) + µ∥S∥0 → min

L,S

L+ S = Z.
(3)

• L – dense lower rank approximation,
• S – sparse noise component,
• µ > 0 fixed number.

This is an NP-Hard problem. No easy solutions.
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Partially Observed Data

If we observes only elements with indices (i, j) ∈ Ê problem
formulation should be modifiedrank(L) + µ∥S∥0 → min

L,S

PÊ(L+ S) = z.
(4)

Where PÊ keeps only elements with indices from Ê
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Convex Relaxation

Straightforward approach is to approximate ∥ · ∥0 norm with ∥ · ∥1
norm. And rank(·) with sum of eigenvalues also known as singular
norm ∥ · ∥∗: ∥L∥∗ + µ∥S∥1 → min

L,S

L+ S = Z.
(5)
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Reformulation as SDP

The followed problem is equivalent to the initial one:

rank(Y) + µ∥S∥0 → min
Y,S

PÊ(L+ S) = z

Y =

[
W1 L
LT W2

]
⪰ 0

(6)

Optimal L∗ is a submatrix of optimal Y∗
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Optimization Algorithm



Faces in the Cone Sn
+

Let V be a subspace in Rn, then the following subset is a face in the
cone Sn+

FV = {X ∈ Sn+|im(Y) ⊆ V} (7)

Fim(X) is the smallest face containing matrix X.
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Faces in the Cone Sn
+

We want to find a subspace containing im(X). Let use SVD for the
matrix X:

X =
[
P Q

] [D 0
0 0

][
P
Q

]
(8)

Matrix P can be used to build a projection on subspace formed by
matrix X:

face(X) = PSr+PT = Sn+ ∩ (QQT)⊥ (9)
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Exposing Vectors in Sn
+

Theorem
Consider a linear transformationM : Sn+ → Rm and a nonempty
feasible set

F = {X ∈ Sn+|M(X) = b}, (10)

for some b ∈ Rm. Then a vector v exposes a proper face ofM(Sm+ ) if
and only if:

0 ̸= M∗v ∈ Sn+ and (v,b) = 0 (11)

Let N denote the smallest face ofM(Sn+) containing b. Then:

1. We always have
Sn+ ∩M−1N = face(F) (12)

2. For any vector v ∈ Rm:

v exposes N⇐⇒ M∗v exposes face(F) (13)
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Exposing Vectors in Sn
+

We have to define several entities to find surface based on theorem
1.

• Linear mappingM is the coordinate projection onto the leading
principal submatrix Sk+ of order k. Submatrix B is transformed
into a vector b = vec(B) of size m = k(k+ 1)/2

• V ∈ Sk+, trace(VB) = 0, v = vec(V)
• Y = M∗v – an exposing vector for the face F
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Graph Representation

Bipartie graph GZ((Um, Vn), Ê) is associated with Z ∈ Rm×n

• Nodes Um = 1, . . . ,m
∪
Vn = 1, . . . ,n represent different axes of Z

• Ê edges (i, j) corresponds to the elements presented in Z

Note that bicliques represent fully observed submatrices.

Let’s find all bicliques in a graph GZ
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Submatrix Decomposition

In order to decompose fully observed submatrix Z̄ let solve
optimization problem:

1
2∥L̄+ S̄− Z̄∥2F → min

L̄,S̄

rank(L̄) ≤ r̄, ∥S∥0 ≤ s̄
(14)

r̄ and s̄ are fixed parameters. This problem is much easier due to the
size and optimization of Frobenius norm.
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PALM Optimization

In order to find the solution we will basically do alternate gradient
descent with projections:

1. GkL = L̄− 1
γ1
(L̄k + S̄k − Z̄),

2. L̄k+1 = argminL̄{∥L̄− GkL∥2F : rank(L̄) ≤ r̄},
3. GkS = S̄k − 1

γ2
(L̄k+1 + S̄k − Z̄),

4. S̄k+1 = argminS̄{∥S̄− GkS∥2F : ∥S̄∥0 ≤ s̄}.
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Facial Reduction for Robust PCA



L̄ processing

What we have:

• Z̄ – fully observed submatrix of Z
• Z̄ = L̄+ S̄, rank(L̄) = r – submatrix decomposition

• Without loss of generality assume L =
[
L1 L2
L̄ L3

]

• L̄ =
[
P̄ Ū

] [Σr 0
0 0

][
Q̄
V̄

]
– L̄ SVD decomposition

•


0 0 0 0
0 ŪŪT 0 0
0 0 V̄V̄T 0
0 0 0 0

 is an exposed vector for face containing L̄
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Reducing the Size of a Problem

Exposing vector allows us to decrease dim of a possible solution.

V = Null(Yexpo) =
[
VP 0
0 VQ

]
, VTPVP = Irp , VTQVQ = Irq (15)

Find the projection on this subspace:

Y∗ = VRVT =
[
VPRpVTP VPRpqVTQ
VQRTpqVTP VQRqVTQ

]
(16)

Basically we are interesting in optimization matrix Rpq
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Reduced Problem

We are interesting in optimization matrix Rpq{
rank(Rpq) + µ∥S∥0 → min

PÊ(VPRpqVTQ) + PÊ(S) = z
(17)
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Further Reducing the Size

On stage with PALM we exactly recovered the values of S̄. This mean
we can remove some entries from linear constrains. Let ÊS be the set
of exactly recovered s and ÊSc set of non recovered s

rank(Rpq) + µ∥S∥0 → min

PÊS(VPRpqV
T
Q) = zÊS

PÊSc (VPRpqV
T
Q) + s = zÊSc

(18)
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