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QP - OptNet

The output of the i-th layer is the solution of a quadratic problem

zi+1 = argmin
z

1

2
z
T
Qiz + q

T
i z ,

subject to Aiz = bi ,Giz  hi ,
(QP-layer)

where Qi , qi , Ai , bi , Gi and hi are determined by upstream layers.

Limitations

I only small scale QP

I cubic complexity of solving the problem (forward pass)

I likely require much more tuning, since there are manifolds in

the parameter space with no e↵ect on the layer’s output



High representational power

Convex optimization layers capture constraints and complex

dependencies:

I e.g. projection onto a simplex

minimize
⇠2Rn

1

2
kx � ⇠k2 ,

subject to 0  ⇠ , 1T⇠ = 1 .



I e.g. represent a piecewise linear function f : Rd ! R

x 7! f (x) =

nX

k=1

wk max{AT
i x + bi , 0} , (1)

with w 2 {±1}n, A 2 Rn⇥d
and b 2 Rn

as the y -part of the

solution to

minimize
y2R ,⇠2Rn
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2
k⇠k2 + 1

2
(y � w

T⇠)2 ,

subject to Ax + b  ⇠ ,

I additively stack to represent vector-valued piecewise function



Simpler Universal Approximator

A ReLU + linear network is su�cient to construct a universal

function approximator, [Sonoda and Murata, 2017]

I ... may require exponentially wide ReLU layer,

[Amos and Kolter, 2017]

I QP-layer trades o↵ extra computational complexity for

representational simplicity



Approaches to Optimization layers

I no general analytic solutions to constrained problems

I Unrolling first-order gradient based iterations with a barrier

function requires substantially larger computational graph,

more compute and memory (e.g. BPTT)

I argmin di↵erentiation ...



Contributions

Authors use

I sensitivity analysis and implicit di↵erentiation to di↵erentiate

through (QP-layer)

I develop a custom solver for multiple small QP in batch form

I make use of a clever factorization of a primal-dual interior

point method to almost e↵ortlessly backpropagate through

(QP-layer)



General Convex Quadratic Problem

Linearly Constrained Quadratic Problem

minimize
z2Rn

1

2
z
T
Qz + q

T
z ,

subject to Az = b ,Gz  h ,
(LCQP)

with

I Q 2 Rn⇥n
positive semidefinite matrix

I q 2 Rn
, A 2 Rm⇥n

, b 2 Rm
, G 2 Rr⇥n

and h 2 Rr



The KKT conditions

The Lagrangian for (LCQP)

L(z ; ⌫,�) = 1

2
z
T
Qz + q

T
z + ⌫T(Az � b) + �T

(Gz � h) ,

[Boyd and Vandenberghe, 2004, sec. 5.2.3]:

I for a�ne constraints feasibility implies strong duality

) saddle points of L solve (LCQP)

Saddle points of L satisfy the KKT conditions

I Primal feasibility Az = b and Gz  h

I Dual feasibility � � 0

I FoC Qz + q + A
T⌫ + G

T� = 0

I Complementary slackness diag (�)(Gz � h) = 0



Di↵erentiating the solution

We need to di↵erentiate the solution to (LCQP) w.r.t. the input

Strict convexity of (LCQP)

) the saddle point (z ,�, ⌫) is unique and di↵erentiable

Provided the saddle point has nice properties, we can use

I sensitivity analysis of the KKT conditions

Qz + q + A
T⌫ + G

T� = 0 ,

Az � b = 0 ,

diag (�)(Gz � h) = 0 ,



Sensitivity of the KKT

Taking matrix derivatives and collecting into a block matrix:
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The full di↵erential

The full di↵erential of the saddle point w.r.t. the parameters is

2

4
@z
@�
@⌫

3

5 = K
�1� , (2)

where

I K is the left-hand of the KKT sensitivity matrix

I � is a di↵erential form w.r.t. @Q, @b, etc.

) Never compute this explicitly for e�cient backprop



Backpropagation

Backpropagation uses chain rule with right-side products only

r✓L(H(✓)) =
⇣
@H(✓)
@✓T| {z }
JH✓
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rzL(z)

��
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,

I rzL is an m ⇥ 1 downstream gradient

I J
H
✓ is the Jacobian of the current layer H : Rn ⇥ Rp ! Rm

w.r.t. a input / parameter ✓

The full di↵erential of L(H(✓)) where H is (LCQP) is

@✓L(H(✓)) = �T
K

�T

0

@
rzL(z)

0

0

1

A
�����
z=H(✓)

,



QP-Layer: forward & backward passes

Amounts to solving the (QP-layer)

I for batch size 1 any method / library shall do

I what about batched solving QP-layer in parallel?

The batched primal-dual interior point QP solver

I specialized solver for batches of quadratic problems (LCQP)

I LU-factorizes K as a by-product of iterative solution

I quadratic instead of cubic complexity

Implemented in PyTorch

I https://github.com/locuslab/qpth



QP solver performance
I significantly slower then a fully connected layer

I faster than non-batched specialized existing solvers
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Figure 1: Performance of a linear layer and a QP layer.
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Figure 2: Performance of Gurobi and our QP solver.



Total variation signal denoising layer

Smooth some noisy signal y by solving the problem

minimize
z2Rn

1

2
ky � zk2 + �

��Dz
��
1
,

where D is the (n � 1)⇥ n first di↵erence matrix.

The problem is equivalent to the following LCQP

I Equivalent to

minimize
z2Rn,⇠2Rn�1
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2
ky � zk2 + �1T⇠ ,

subject to
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 0 ,



Scenaria

I Total variation denoising with OptNet

I Learning with a fully-connected neural network (FC Net)

I Learning the di↵erencing operator with OptNet from scratch

(Pure OptNet)

I Seeding OptNet with the a noisy D (OptNet Tuned TV)

Method Train MSE Test MSE

Total Variation 16.3 16.5

FC Net 18.5 29.8

Pure OptNet 52.9 53.3

OptNet Tuned TV 13.8 14.4

Table 1: Denoising task error rates.



Figure 3: Initial and learned di↵erence operators for denoising.



4⇥ 4 Sudoku

Sudoku is essentially a constraint satisfaction problem

Neural solver trained on pairs of unsolved and solved puzzles

I deep CNN: 10 conv layers with 512⇥ 3⇥ 3 filters

I OptNet QP-layer with

I positivity inequality constraints

I arbitrary learnt constraint matrix Ax = b

I Q = 0.1I for strict convexity and feasible

I q is the input one-hot encoding of the Sudoku problem



4⇥ 4 Sudoku
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Figure 4: Sudoku training plots.



MNIST

Compare on MNIST

I fc600-fc10-fc10-softmax

I fc600-fc10-qp10-softmax
I linear constraints determined by upstream layers

I other parameters of the LCQP freely learnt (C in Q = CC
T
)

I Failure QP OptNet gives only marginal improvement
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