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QP - OptNet

The output of the /-th layer is the solution of a quadratic problem

. 1_T T
Ziyy =argmin 5z Qiz+q; z,
’ z 20 : (QP-layer)
subject to Aiz = bj, Giz < h;,

where Q;, gi, A;, b;, G; and h; are determined by upstream layers.

Limitations
» only small scale QP
» cubic complexity of solving the problem (forward pass)

> likely require much more tuning, since there are manifolds in
the parameter space with no effect on the layer's output



High representational power

Convex optimization layers capture constraints and complex
dependencies:

> e.g. projection onto a simplex
minimize  5||x —
mimize  3{lx— &I
subject to 0<¢,1t¢=1.



> e.g. represent a piecewise linear function f: R — R

x> f(x) = Z wy max{Afx + b;, 0}, (1)
k=1

with w € {£1}", A€ R"9 and b € R" as the y-part of the
solution to

C e 1 2 1 T e\2
minimize S1EN°+ 30y —w ),

subject to Ax+ b < €&,

» additively stack to represent vector-valued piecewise function



Simpler Universal Approximator

A RelLU + linear network is sufficient to construct a universal
function approximator, [Sonoda and Murata, 2017]

> ... may require exponentially wide RelLU layer,
[Amos and Kolter, 2017]

» QP-layer trades off extra computational complexity for
representational simplicity



Approaches to Optimization layers

» no general analytic solutions to constrained problems
» Unrolling first-order gradient based iterations with a barrier
function requires substantially larger computational graph,

more compute and memory (e.g. BPTT)

» argmin differentiation ...



Contributions

Authors use

» sensitivity analysis and implicit differentiation to differentiate
through (QP-layer)

» develop a custom solver for multiple small QP in batch form

» make use of a clever factorization of a primal-dual interior

point method to almost effortlessly backpropagate through
(QP-layer)



General Convex Quadratic Problem

Linearly Constrained Quadratic Problem

P 1_T T
minimize 5z Qz+q z,
zeR"

subjectto Az=b,Gz< h,

with
> Q € R™" positive semidefinite matrix
» ge R AecR™" becR™ GeR™ and he R’

(LCQP)



The KKT conditions

The Lagrangian for (LCQP)

L(z;v,\) =221 Qz+ q'z+ v (Az — b) + X' (Gz — h),

[Boyd and Vandenberghe, 2004, sec. 5.2.3]:
» for affine constraints feasibility implies strong duality
= saddle points of L solve (LCQP)

Saddle points of £ satisfy the KKT conditions
» Primal feasibility Az=band Gz < h
» Dual feasibility A > 0
» FoC Qz+ g+ ATv+ GTA=0
» Complementary slackness diag (\)(Gz — h) =0



Differentiating the solution

We need to differentiate the solution to (LCQP) w.r.t. the input

Strict convexity of (LCQP)
= the saddle point (z, A, v) is unique and differentiable

Provided the saddle point has nice properties, we can use

» sensitivity analysis of the KKT conditions

Qz+g+Av+G'A=0,
Az—b=0,
diag (A\)(Gz — h) =0,



Sensitivity of the KKT

Taking matrix derivatives and collecting into a block matrix:
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The full differential

The full differential of the saddle point w.r.t. the parameters is

0z
ON| = K_1X7 (2)
ov

where
» K is the left-hand of the KKT sensitivity matrix
» x is a differential form w.r.t. 9Q, 0b, etc.

= Never compute this explicitly for efficient backprop



Backpropagation

Backpropagation uses chain rule with right-side products only

oHO)\ 1
VoL(H(0)) = ( 39(1“)) VZL(Z)‘Z:H(Q)a
——
Jg
» V,L is an m x 1 downstream gradient

> JQH is the Jacobian of the current layer H: R"” x RP — R™
w.r.t. a input / parameter 6

The full differential of L(H(0)) where H is (LCQP) is

V.L(z)
FL(H@) =x'K"| O :
0 z=H(9)



QP-Layer: forward & backward passes

Amounts to solving the (QP-layer)
» for batch size 1 any method / library shall do
» what about batched solving QP-layer in parallel?

The batched primal-dual interior point QP solver

> specialized solver for batches of quadratic problems (LCQP)

» [ U-factorizes K as a by-product of iterative solution
» quadratic instead of cubic complexity

Implemented in PyTorch
» https://github.com/locuslab/qpth



solver performance

» significantly slower then a fully connected layer
» faster than non-batched specialized existing solvers
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Figure 1: Performance of a linear layer and a QP layer.
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Figure 2: Performance of Gurobi and our QP solver.



Total variation signal denoising layer

Smooth some noisy signal y by solving the problem

minimize 3|y — z[|* + A[| Dz]],

where D is the (n — 1) x n first difference matrix.

The problem is equivalent to the following LCQP

» Equivalent to

minimize  3|ly — z||? + \1te,
ZER”,{ER”_l

. D -1 z
subject to (—D —l) <€> <0,



Scenaria
» Total variation denoising with OptNet
» Learning with a fully-connected neural network (FC Net)

» Learning the differencing operator with OptNet from scratch
(Pure OptNet)

» Seeding OptNet with the a noisy D (OptNet Tuned TV)

Method Train MSE  Test MSE
Total Variation 16.3 16.5
FC Net 18.5 29.8
Pure OptNet 52.9 53.3
OptNet Tuned TV 13.8 14.4

Table 1: Denoising task error rates.
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Figure 3: Initial and learned difference operators for denoising.

-0.60

DA



4 x 4 Sudoku

Sudoku is essentially a constraint satisfaction problem

Neural solver trained on pairs of unsolved and solved puzzles
» deep CNN: 10 conv layers with 512 x 3 x 3 filters

» OptNet QP-layer with
> positivity inequality constraints
» arbitrary learnt constraint matrix Ax = b
» @ = 0.1/ for strict convexity and feasible
» ¢ is the input one-hot encoding of the Sudoku problem



4 x 4 Sudoku
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MNIST

Compare on MNIST

» £c600-fc10-fcl10-softmax
» £c600-fcl10-gqplO0-softmax

» linear constraints determined by upstream layers
> other parameters of the LCQP freely learnt (C in Q = CCT)

» Failure QP OptNet gives only marginal improvement
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