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Introduction

Mina idea
» cast a dynamic programming problem as a linear problem
» somehow make the linear problem smooth by relaxation

» recast the smoothed problem back into dynamic programming
setting

This enables
» take gradients w.r.t. parameters

» compute hessian-vector products w.r.t parameters



Dynamic Programming Problem

Typical setting for a dynamic programming problem
» G = (V, E) DAG with unique source v, and sink v* nodes
> weights 6 € RY*V with Oy,v, =1land 0, = —cifuv ¢ E

Goal
Get a path with the highest score among all paths v, — v*

Solution
Identify each v € V with its number i/ = 1...m in topological order

Fi(6) + max 6+ Fi(0),  Fi(0) 0,
1 jei;

DP(0) < Fn(0).

Find the optimal path by backtracking through (F;(6)):Z,



Dynamic Programming Problems as Linear Problems

[Bellman, 1952] showed that DP(0) = LP(0)

LP(Q) = max Z Z quluv€7r — maX<97y>

-
ueV veV yey

where ) is the set of binary matrices representing paths v, — v*

However ...

» LP(#) is not differentiable unless its solution is unique

» the optimal solution y*(0) = arg LP(6) is a discontinuous map



What i1s a “maximum” ?

The largest element of # € RY is max(f)

max: RY — R,
M
0 — m%x@,- = sup (x,0), (Max)
i=1 xeAd

where A9 in the unit simplex in RY, A9 = {x: x|y =1,x > 0}.
» used in every optimization problem

» differentiable almost everywhere (except on negligible sets)

» non-differentiable solution



Making maxima smooth

Let Q: R? — R be a strongly convex regularizer on A

maxq: R¢ — R,

0 — sup <X, (9> . Q(X), (Smooth—l\/lax)
xeAd

Properties from strong convexity of €2

> x*(0) = argsup,cad(x,0) — Q(x) exists and unique
» Vmaxq(#) = x*(#) and is Lipschitz-continuous

> V2maxq(f) exists almost everywhere



Natural generalization of max

Table 1: Various types of maxg

regular-max soft-max sparse soft-max

Q 0 — > xilog x; 51112

» maxq(f1) < maxq(#2) whenever 61 < 6

» maxq(lc + 0) = c + maxq(#) for any c € R

» maxq(7#) = maxq(#) for any permutation P with Qo P = Q
> if §; = —oo then (Vmaxq(6)); =0

» maxq(f) is not far from max(6)



Smoothed LP and DP

For any f: YV — R denote

n;?J(}Q f(y) = maxq(f(Y)), f(¥)= (f(y))yey c RYI.

Linear Program

LPqo(0) = maxq(f,y) .
yey

Bellman Iterations
In topological order of G do

Fi(0) <+ maxq(8; + Fj(0)), Fi(f) «+ O,
i jeG;

DPq(6) < Fn(6).



Behaviour of smoothed LP and DP

Both LPq(6) and DPq(#) are well-behaved
» convex and differentiable everywhere
» have Lipschitz continuous gradients

» gradients are differentiable almost everywhere

However ...

» LPq(0) is intractable due to exponential size of Y
» DPgq(6) is tractable and has complexity O(E|)



Properties of smoothed LP and DP

[Mensch and Blondel, 2018] propose and prove:
» DPq(#) is convex w.r.t 0

» DPq(0) = LPq(0) if and only if Q(x) = —v > . xjlog x;
> is “close” to LP: ‘LP(H) — DPQ(@)‘ < mM(£, m) and

yliino DP.q(s) = LP(0)

> efficient recursion to compute V4DPq(#) € RV*Y and
hessian-vector products V2DPgq(6)Z



Computing VyDPq(6)

Simply backpropagate along the reverse-topological order of G

» forward-pass: while computing F;(0) get
q,-(@) = V maxg (9,‘ —+ F(@)) € Am,

assuming Fy(60) = —oo for all k after i

» backward-pass: in reverse-topological order j = m...1 do

VT/j(—ZW,'j if j #melse 1,
iEGj
Wij <— V_V,'q,'j if i € Gj else 0,
V@DPQ(Q) <— (W,'j),',jzlmm € vav.



Interpretaion of VyDPq(6)

The matrix Q(6) = (q;(ﬁ)):.ﬂ:l

» a transition matrix for backward random walks from v* = m
back to v, =1

> P(i —j) = q;i(0) if i € G].

[Mensch and Blondel, 2018] demonstrate

» the gradient is the expected path of the random walk
VQDPQ = EyNQ(Q)y .
» convergence to the optimal solution

VQDPWQ(Q) — y*(@) c 8LP(9).
v—0



Conclusion

[Mensch and Blondel, 2018] propose

» a theoretical framework for turning dynamic programs into
convex, differentiable and tractable operators

» efficient way to embed the smoothed programs into models
learnt by gradient descent

Applications: learning optimal cost parameters for end-to-end
training In

» sequence prediction in part-of-speech tagging

> time series alignment in audio transcription

» attention mechanism in machine translation
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