
Di↵erential Dynamic Programming for Structured

Prediction and Attention

A short report on [Mensch and Blondel, 2018]

Nazarov Ivan

Skoltech

August 3, 2018

Introduction

Mina idea

I cast a dynamic programming problem as a linear problem

I somehow make the linear problem smooth by relaxation

I recast the smoothed problem back into dynamic programming
setting

This enables

I take gradients w.r.t. parameters

I compute hessian-vector products w.r.t parameters

Dynamic Programming Problem

Typical setting for a dynamic programming problem

I G = (V ,E) DAG with unique source v⇤ and sink v⇤ nodes

I weights ✓ 2 RV⇥V with ✓v⇤v⇤ = 1 and ✓uv = �1 if uv /2 E

Goal

Get a path with the highest score among all paths v⇤ ! v⇤

Solution

Identify each v 2 V with its number i = 1...m in topological order

Fj(✓) max
i : j2Gi

✓ij + Fj(✓) , F1(✓) 0 ,

DP(✓) Fm(✓) .

Find the optimal path by backtracking through (Fj(✓))mj=1

Dynamic Programming Problems as Linear Problems

[Bellman, 1952] showed that DP(✓) = LP(✓)

LP(✓) = max
⇡

X

u2V

X

v2V
✓uv1uv2⇡ = max

y2Y
h✓, yi

where Y is the set of binary matrices representing paths v⇤ ! v⇤

However ...

I LP(✓) is not di↵erentiable unless its solution is unique

I the optimal solution y⇤(✓) = arg LP(✓) is a discontinuous map

What is a “maximum”?

The largest element of ✓ 2 Rd is max(✓)

max: Rd
�! R ,

✓ 7�!
d

max
i=1

✓i = sup
x2�d

hx , ✓i ,
(Max)

where �d in the unit simplex in Rd , �d = {x : kxk1 = 1 , x � 0}.

I used in every optimization problem

I di↵erentiable almost everywhere (except on negligible sets)

I non-di↵erentiable solution

Making maxima smooth

Let ⌦ : Rd
! R be a strongly convex regularizer on �d

max⌦ : Rd
�! R ,

✓ 7�! sup
x2�d

hx , ✓i � ⌦(x) , (Smooth-Max)

Properties from strong convexity of ⌦

I x⇤(✓) = arg supx2�d hx , ✓i � ⌦(x) exists and unique

I rmax⌦(✓) = x⇤(✓) and is Lipschitz-continuous

I r2max⌦(✓) exists almost everywhere

Natural generalization of max

Table 1: Various types of max⌦

regular-max soft-max sparse soft-max

⌦ 0 �
P

i xi log xi
1

2
k · k

2

I max⌦(✓1)  max⌦(✓2) whenever ✓1  ✓2

I max⌦(1c + ✓) = c +max⌦(✓) for any c 2 R

I max⌦(⇡✓) = max⌦(✓) for any permutation P with ⌦ � P = ⌦

I if ✓j = �1 then (rmax⌦(✓))j = 0

I max⌦(✓) is not far from max(✓)

Smoothed LP and DP

For any f : Y ! R denote

max⌦
y2Y

f (y) , max⌦
�
f (Y)

�
, f (Y) =

�
f (y)

�
y2Y 2 R|Y| .

Linear Program

LP⌦(✓) = max⌦
y2Y
h✓, yi .

Bellman Iterations

In topological order of G do

Fj(✓) max⌦
i : j2Gi

�
✓ij + Fj(✓)

�
, F1(✓) 0 ,

DP⌦(✓) Fm(✓) .

Behaviour of smoothed LP and DP

Both LP⌦(✓) and DP⌦(✓) are well-behaved

I convex and di↵erentiable everywhere

I have Lipschitz continuous gradients

I gradients are di↵erentiable almost everywhere

However ...

I LP⌦(✓) is intractable due to exponential size of Y

I DP⌦(✓) is tractable and has complexity O
�
|E |

�

Properties of smoothed LP and DP

[Mensch and Blondel, 2018] propose and prove:

I DP⌦(✓) is convex w.r.t ✓

I DP⌦(✓) = LP⌦(✓) if and only if ⌦(x) = ��
P

i xi log xi

I is “close” to LP:
��LP(✓)� DP⌦(✓)

��  mM(⌦,m) and

lim
�!0

DP�⌦(✓) = LP(✓) ,

I e�cient recursion to compute r✓DP⌦(✓) 2 RV⇥V and
hessian-vector products r2DP⌦(✓)Z

Computing r✓DP⌦(✓)

Simply backpropagate along the reverse-topological order of G

I forward-pass: while computing Fi (✓) get

qi (✓) = rmax⌦
�
✓i + F (✓)

�
2 �m ,

assuming Fk(✓) = �1 for all k after i

I backward-pass: in reverse-topological order j = m...1 do

w̄j
X

i2Gj

wij if j 6= m else 1 ,

wij w̄iqij if i 2 Gj else 0 ,

r✓DP⌦(✓) (wij)i ,j=1...m 2 RV⇥V .

Interpretaion of r✓DP⌦(✓)

The matrix Q(✓) =
�
qi (✓)

�m
i=1

I a transition matrix for backward random walks from v⇤ = m
back to v⇤ = 1

I P(i ! j) = qij(✓) if i 2 Gj .

[Mensch and Blondel, 2018] demonstrate

I the gradient is the expected path of the random walk

r✓DP⌦ = Ey⇠Q(✓)y .

I convergence to the optimal solution

r✓DP�⌦(✓) ���!
�!0

y⇤(✓) 2 @LP(✓) .

Conclusion

[Mensch and Blondel, 2018] propose

I a theoretical framework for turning dynamic programs into
convex, di↵erentiable and tractable operators

I e�cient way to embed the smoothed programs into models
learnt by gradient descent

Applications: learning optimal cost parameters for end-to-end
training in

I sequence prediction in part-of-speech tagging

I time series alignment in audio transcription

I attention mechanism in machine translation

References

Bellman, R. (1952).

On the theory of dynamic programming.

Proceedings of the National Academy of Sciences, 38(8):716–719.

Mensch, A. and Blondel, M. (2018).

Di↵erentiable Dynamic Programming for Structured Prediction and Attention.

In 35th International Conference on Machine Learning, volume 80 of Proceedings of the 35th International
Conference on Machine Learning, Stockholm, Sweden.

