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Observation on Loss Surface

The cross-entropy loss + L reg surface of a deep residual network (ResNet-164) on

CIFAR-100, as a function of network weights in a two-dimensional subspace.
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Could we find path between nets with near constant low loss?
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Problem formulation

Consider:

» L(w) := DNN loss with fixed architecture and weigths w
> Wy, Wy € RInetl

> po(t) : [0; 1] — RInetl

> ¢9(0) = vin; do(l) = e

What we really want to solve, as | suppose:

mein max L(po(t))



Trivial Solution

Consider CNN with ReLU activations, Wy, Ww» € RI"tl two nets.
» Connect both w; with 0 with constant loss, so have path with constant loss every where,
expect 0
» o; = W;ReLU(o;_1) + b;, i = n correspond to logits
» Parametrization on t:
» Wi(t) = Wit
> b,‘(t) = bt

» Then logist o,(t) = t"0, for t € (0; 1] prediction labels not change

Authors solve problem under another criteria, however, they are still find this trivial path. Now
| formulate their optimization criteria and add some intuition about it.



Relaxed problem

Minimize average loss along curve:
1 / o
min g | oo = | [eaonlae| [ LonteNiontey at =
0 0
& min Eew ugo, L(90(1)),

where U[¢g]:= uniform distribution on curve

However, we have some problems with normalization such distribution and hence taking
gradients with respect to 6



More Relaxed problem

So, authors relax more:

mgin EtNU[O;l] L(¢9(t))

Note, that they are quite different problems! But now we have very easy gradient estimation
procedure:

VoE:wupoL(do(t)) = VoL(¢o(£)), T~ U[0;1]
Parametrization on ¢, t € [0;1]:

» Linear chain

2(t0 + (0.5 — t)wn) t €[0;0.5]
{2((t —0.5)wn + (1 —t)8) te[0.51]

» Bezier Curve

do(t) = (1 — t)2Wy + 2t(1 — )0 + 2y

Experiments only for two nets, but can be generalized



Some intuition on problem formulation

We have trivial upper bound:

min L(W) < Ew~p(w|9)L(W)7 VW, 0

w

Now we can make it thinner:

mmi/n L(w) < mein Ew~p(w|o)L(w)
It's common trick in bayesian/variational optimization. Now we just reparametrize our
distribution p(w|0) with t ~ U[0; 1]; ¢(t)

Note, that even as we don't averaging uniformly along curve it's upper ubond, that we
minimizing.



Experiments: Path

ResNet-164, CIFAR 10, plane of curve
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Experiments: Ensemble learning

Green := step on random angle, blue := our ensambling, red := straight line
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Experiments: Ensemble learning

VGG16 model architecture, CIFAR 10

Strategies to make different nets:

Base net, G 200 epochs with SGD. The learning rate is ini- tialized to 0.05 and scaled down by
a factor of 5 at epochs 60, 120, 160 (step decay). We use a training batch size of 100,
momentum of 0.9, and a weight decay of 0.0005.

» A using a training batch size of 4000

» B by using the Adam optimizer instead of SGD

» C with a linearly decaying LR scheme

» D using a smaller weight decay, no |12 reg.

» E by increasing the variance of initialization distribution

» F using no data augmentation

And ensamble with different t, G and any other one



Experiments:

Ensemble learning

Curve GA (Large batch-size = 4000)
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Curve GB (Adam optimizer)
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Experiments: Ensemble learning

o5 Curve GE (Bad initialization (variance = 3x)) Curve GF (Without Data Augmentation)
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Experiments: Online Ensemble learning

It" s fine, but we should learn 2 nets instead of one. We can use cycling learning rate and
ensemble online.

Learning rate
5

But it is not work much :)



Next time

Prediction of flat/sharp minimum convergence by largest eigenvalue of Hessian dynamic
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