Evidence Based Model Selection for SVM

Smoliakov Dmitrii

Skoltech

September 20, 2018

Evidence Based Parameters Selection

Suppose that we have probabilistic model Bayesian Formula:

$$\mathbb{P}(\theta|X) = \frac{\mathbb{P}(X|\theta) \cdot \mathbb{P}(\theta|\alpha)}{\mathbb{P}(X|\alpha)} = \frac{\textit{likelihood} \times \textit{prior}}{\textit{evidence}}$$

- ▶ $\mathbb{P}(X|\theta)$ likelihood
- ▶ $\mathbb{P}(\theta|\alpha)$ prior distribution
- α fixed parameter
- $ightharpoonup \mathbb{P}(X|\alpha) = \int_{\theta} \mathbb{P}(X|\theta) \cdot \mathbb{P}(\theta|\alpha) \text{evidence}$

Let's check two class problem for a moment

$$\frac{\|w\|^2}{2} + C\sum_{i=1}^{l} h(y_i[w \cdot \phi(x_i) + b]) \rightarrow \min_{w}$$

Where:

$$h(t) = \max(0, 1-t)$$

Let's check two class problem for a moment

$$\frac{\|\mathbf{w}\|^2}{2} + C \sum_{i=1}^{l} h(y_i[\mathbf{w} \cdot \phi(\mathbf{x}_i) + b]) \to \min_{\mathbf{w}}$$

Prior distribution:

$$Q(w) \approx \exp(-\frac{\|w\|^2}{2}) \approx N(0, E)$$

In case of kernel techniques:

$$\theta(x) = w \cdot \phi(x) + b$$

The SVM prior – Gaussian Process

$$\frac{\|w\|^2}{2} + C\sum_{i=1}^{l} h(y_i[w \cdot \phi(x_i) + b]) \rightarrow \min_{w}$$

Prior distribution:

$$Q(y_i|x_i, w) = k(C) \exp(-Ch(y_i \cdot \theta(x_i)))$$

k(C) is just normalization

$$k(C) = 1/(1 + \exp(-2C))$$

Full likelihood

$$Q(X,y|\theta) = \prod_{i}^{I} Q(y_{i}|x_{i},w)\mathbb{P}(x_{i})$$

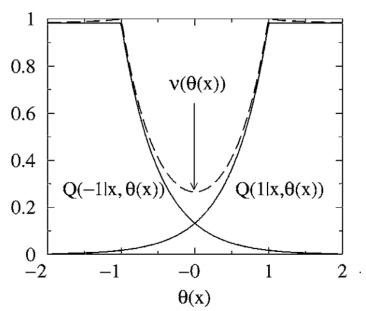
$$Q(X,y|\theta) = \prod_{i}^{l} Q(y_i|x_i,w)\mathbb{P}(x_i)$$

Take a look at a single point:

$$\nu(\theta(x)) = Q(1|x,\theta) + Q(-1|x,\theta) = k(C)\left(\exp(-Cl(\theta(x))) + \exp(-Cl(-\theta(x)))\right) \le 1$$

Sum of all possible sets is less than one

$$\int_{X,y} Q(X,y|\theta) = \left(\int_X Q(x)\nu(\theta(x))\right)^{l} \le 1$$



In the paper "Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities. Authors proposed to add special normalize coefficient.

$$\mathbb{P}(X, y, \theta) = Q(X, y|\theta)Q(\theta)/N(X, y)$$

Where:

$$N(\theta) = \int_{x} Q(x)\nu(\theta(x))$$

$$N(D) = \int d\theta Q(\theta) N^n(\theta)$$

Probabilistics SVM

Data is produced by this mechanism

- 1. Generate θ from GP prior
- 2. Sample x from Q(x)
- 3. Assign labels with probabilities $Q(y|x,\theta)$
- 4. With probability $1 \nu(\theta(x))$ generate "I don't know" class
- 5. If single "I don't know" was generated restart procedure

 $|\theta(x)|$ is small inside the gap this leads to a bigger margin.

One Class SVM

One of the possible options of building a model of the normal condition is One Class SVM.

We have:

- ▶ Points $X_1, ..., X_l \subset \mathbb{R}^m$
- ▶ Mapping $\phi : \mathbb{R}^m \to \mathbb{H}_{\phi}$

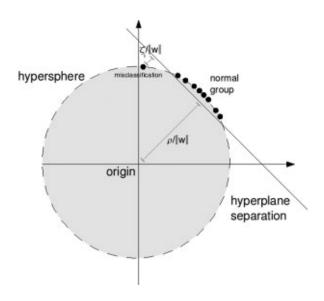
We want:

lacktriangle Separate points from coordinate origin in \mathbb{H}_ϕ

Optimization Problem

$$\frac{\nu I}{2} \|w\|^2 - \rho \nu I + \sum_{i=1}^{I} \xi_i \to \min_{w,\rho,\xi} (w \cdot \phi(X_i)) \ge \rho - \xi_i$$
$$\xi_i \ge 0$$

Intuition Illustration



Problems

No free lunch

- 1. No explicit labeling
- 2. No proper validation techniques
- 3. Difficult to select parameters

One Class SVM

$$\frac{\|w\|^2}{2} + C \sum_{i=1}^{l} h([w \cdot \phi(x_i) + b]) \to \min_{w}$$

- 1. Generate θ from GP prior
- 2. Sample x from Q(x)
- 3. With probability $1 \prod_{i=1}^{I} (1 \nu(\theta(x_i)))$ repeat

We will get data from some distribution Q(x) but based on decision function $\theta(x)$ some of elements are less probable and we reject the whole set.

Evidence Calculation

We are going to look at this values:

Probability of *X*:

$$\mathbb{P}(X) = \frac{N(x)}{N}Q(X)$$

Probability not to reject given X

$$\mathbb{P}(1|X) = Q(1|X)N(X)$$

Calculating Q(1|X)

Q(1|X) – multidimensional integral. We will use Laplace approximation

$$Q(1|X) = k^{n}(C) \int \frac{d\theta}{\sqrt{2\pi K}} \exp\left(-\frac{1}{2} \sum_{i,j} \theta_{i}(K^{-1})_{i,j}\theta_{j} - C \sum_{i} h(\theta_{i})\right) = \frac{k^{n}(C) \exp\left(-\frac{1}{2} \sum_{i,j} \theta_{i}^{*}(K^{-1})\theta_{j}^{*} - C \sum_{i} h(\theta_{i}^{*})\right)}{Q^{*}(1|X)} \times \int \frac{d\Delta\theta}{\sqrt{2\pi |K|}} \exp\left(-\frac{1}{2} \sum_{i,j} \Delta\theta_{i}(K^{-1})\Delta\theta_{j} - \sum_{i} \Delta\theta_{i}(K^{-1})_{i,j}\theta_{j}^{*} - C \sum_{i} \Delta\theta_{i}H(\Delta\theta_{j})\right)$$

Calculating Q(1|X)

Finally:

$$Q(1|X)pprox Q^*(1|X)rac{1}{\sqrt{2\pi|K|}}\prod_i\left(rac{1}{C-lpha_i}+rac{1}{lpha_i}
ight)$$

Where:

$$\alpha_i = \sum_j K_{i,j}^{-1} \theta_j^*$$

Calculating N(X)

Authors of initial paper calculated coefficient N(X) numerically.

Summary

In the end it's better than nothing

- It's hard to select good parameters in anomaly detection
- Evidence maximization gives an efficient framework for model selection
- ▶ Vanilla One Class SVM doesn't have proper probability model
- Introducing additional "I don't know" class allows to build probability model
- Unfortunately it contains numerical calculation of multidimensional integral