Attention is all you need

Denis Volkhonskiy

Motivation

- Attention is focusing on specific parts of the input.
- Many animals focus on specific parts of visual inputs to compute the responses
- Let's include such mechanism to Deep Neural models

Image captioning task

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

Image captioning task

Problem

- At each iteration we generate one word
- Each word describe only a part of the image
- But we use the hole image representation h as condition for generation
- Attention will help!

Attention layer

- n input arguments y_i
- Context c
- Output z is summary of y_i focusing on the context c

Attention layer

 $m_i = \tanh\left(W_{cm}c + W_{ym}y_i\right)$

$$s_i \propto \exp\left(\langle w_m, m_i \rangle\right)$$

$$\sum_{i} s_i = 1$$

$$z = \sum_{i} s_i y_i$$

Image captioning

Image Captioning with attention

Attention

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Attention for Machine Translation

Translation

Early in the year 1806 Nicholas Rostov returned home on leave. <EOS>

В начале 1806 года Николай Ростов вернулся в отпуск. <EOS>

Neural machine translation and long sentences

Meeting a comrade at the last post station but one before Moscow, Denisov had drunk three bottles of wine with him and, despite the jolting ruts across the snow-covered road, did not once wake up on the way to

На предпоследней станции, встретив товарища, Денисов выпил с ним три бутылки вина и подъезжая к Москве, несмотря на ухабы дороги, не просыпался, лежа на дне перекладных саней, подле Ростова, который, по мере приближения к Москве, приходил все более и более в нетерпение. <EOS>

Leo Tolstoy "War and Peace", 1869
Cho et al. "On the Properties of Neural Machine Translation: Encoder-Decoder Approaches", 2014

Translation with attention

Machine translation

- 2 LSTMs
- Encoder-decoder structure
- Generation per token (word)

Translation with attention

- Add attention block
- Each h attention input
- Each h' attention context

Attention is all you need

Attention Is All You Need

Replace LSTMs with a lot of attention! Apply to neural machine translation

- State-of-the art results
- Much less computation for training

Model	BLEU		Training Cost (FLOPs)		
	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [17]	23.75				
Deep-Att + PosUnk [37]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [36]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$	
MoE [31]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [37]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [36]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	3.3 \cdot	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.0	2.3 ·	$2.3\cdot 10^{19}$	

Transformer architecture

- Encoder: 6 layers of self-attention + feed-forward network
- Decoder: 6 layers of masked self-attention and output of encoder + feed-forward.

Layer types

- Input layer
- Per-word feedforward
- Self-attention
- Attention over encoder outputs

Input layer

add positional encoding encode offsets between words not used in LSTMs

embedding pick a vector for every word

Positional encoding

- Positional encoding provides relative or absolute position of given token
- Many options to select positional encoding, in this work:

```
PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})

PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})
```

Alternative, to learn positional embeddings

Per-word feedforward

fully-connected network same for every word G(x) = Dense(ReLU(Dense(x)))

на предпоследней станции встретив товарища

Self-attention

every word attends to features of all words

replaces recurrence

$$\alpha_{ki} = \frac{\exp(\operatorname{score}(x_k, x_i))}{\sum_{j=1}^{L} \exp(\operatorname{score}(x_k, x_j))}$$

$$\operatorname{score}(x_k, x_i) = x_k^T x_i / \sqrt{d}, \ d = \dim(x_k)$$

на предпоследней станции встретив товарища

Scaled dot-product attention

- How Values should pay attention on Query using Keys
- Self-attention: Query = Key = Value

 $\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Scaled Dot-Product Attention

Multi-head attention

- Apply attention in K feature spaces;
- Concatenate results

Transformer

Self-attention

attention head #1

attention head #2

Multi-head attention

Attention for Point Clouds

